ar X iv : m at h / 05 05 01 1 v 4 [ m at h . PR ] 5 J un 2 00 6 EXCHANGEABLE , GIBBS AND EQUILIBRIUM MEASURES FOR MARKOV
نویسندگان
چکیده
We study a class of strongly irreducible, multidimensional, topological Markov shifts, comparing two notions of “symmetric measure”: exchangeability and the Gibbs (or conformal) property. We show that equilibrium measures for such shifts (unique and weak Bernoulli in the one dimensional case) exhibit a variety of spectral properties.
منابع مشابه
ar X iv : m at h / 05 05 01 1 v 3 [ m at h . PR ] 8 S ep 2 00 5 EXCHANGEABLE , GIBBS AND EQUILIBRIUM MEASURES FOR MARKOV
We study a class of strongly irreducible, multidimensional, topological Markov shifts, comparing two notions of “symmetric measure”: exchangeability and the Gibbs (or conformal) property. We show that equilibrium measures for such shifts (unique and weak Bernoulli in the one dimensional case) exhibit a variety of spectral properties.
متن کاملar X iv : m at h / 05 11 35 2 v 2 [ m at h . D S ] 1 A ug 2 00 6 SINGULAR - HYPERBOLIC ATTRACTORS ARE CHAOTIC
We prove that a singular-hyperbolic attractor of a 3-dimensional flow is chaotic, in two strong different senses. Firstly, the flow is expansive: if two points remain close for all times, possibly with time reparametrization, then their orbits coincide. Secondly, there exists a physical (or Sinai-Ruelle-Bowen) measure supported on the attractor whose ergodic basin covers a full Lebesgue (volume...
متن کاملar X iv : m at h / 05 11 35 2 v 3 [ m at h . D S ] 2 2 M ar 2 00 7 SINGULAR - HYPERBOLIC ATTRACTORS ARE CHAOTIC
We prove that a singular-hyperbolic attractor of a 3-dimensional flow is chaotic, in two strong different senses. Firstly, the flow is expansive: if two points remain close for all times, possibly with time reparametrization, then their orbits coincide. Secondly, there exists a physical (or Sinai-Ruelle-Bowen) measure supported on the attractor whose ergodic basin covers a full Lebesgue (volume...
متن کاملar X iv : m at h - ph / 0 30 40 13 v 1 1 0 A pr 2 00 3 Squeezed Statistical Mechanics
We present a formulation of Statistical Mechanics based on the concept of the dimensionless characteristic thermodynamic function, which has the form of a negative Massieu-Planck generalized potential. This function is equivalent to the free energy of the system in kT units. We construct classes of configurations in terms of the constraints of the system and, by applying the condition of minimu...
متن کاملExchangeable, Gibbs and Equilibrium Measures for Markov Subshifts
We study a class of strongly irreducible, multidimensional, topological Markov shifts, comparing two notions of “symmetric measure”: exchangeability and the Gibbs property. We show that equilibrium measures for such shifts (unique and weak Bernoulli in the one dimensional case) exhibit a variety of spectral properties.
متن کامل